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Abstract: Molecular hydrogen (H2) is potentially a novel therapeutic gas for acute post-coronavirus
disease 2019 (COVID-19) patients because it has antioxidative, anti-inflammatory, anti-apoptosis, and
antifatigue properties. The aim of this study was to determine the effect of 14 days of H2 inhalation on
the respiratory and physical fitness status of acute post-COVID-19 patients. This randomized, single-
blind, placebo-controlled study included 26 males (44 ± 17 years) and 24 females (38 ± 12 years),
who performed a 6-min walking test (6 MWT) and pulmonary function test, specifically forced vital
capacity (FVC) and expiratory volume in the first second (FEV1). Symptomatic participants were
recruited between 21 and 33 days after a positive polymerase chain reaction test. The experiment
consisted of H2/placebo inhalation, 2 × 60 min/day for 14 days. Results showed that H2 therapy,
compared with placebo, significantly increased 6 MWT distance by 64 ± 39 m, FVC by 0.19 ± 0.24 L,
and, in FEV1, by 0.11 ± 0.28 L (all p ≤ 0.025). In conclusion, H2 inhalation had beneficial health effects
in terms of improved physical and respiratory function in acute post-COVID-19 patients. Therefore,
H2 inhalation may represent a safe, effective approach for accelerating early function restoration in
post-COVID-19 patients.

Keywords: hydrogen inhalation; COVID-19; health; fatigue; 6-min walking test; pulmonary function;
oxygen saturation

1. Introduction

Coronavirus disease 2019 (COVID-19) is a novel infectious disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the
worldwide unpredictable pandemic situation. To date (9 November 2021), statistical data
indicated ~250 million confirmed cases of COVID-19 and over 5 million deaths globally
(https://ourworldindata.org, accessed on 9 November 2021). COVID-19 patients typically
exhibit clinical symptoms such as a fever, headache, dry cough, shortness of breath, and
severe fatigue [1,2]. Post-acute COVID-19 syndrome commonly manifests as a variety
of persistent symptoms, such as severe fatigue, shortness of breath [3], headache, and
attention disorder [4], that occur beyond 4 weeks from the onset of COVID-19 symptoms [5].
Recently, Mehta et al. [6] suggested that the residual abnormalities in health status after
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COVID-19 might, in part, be a consequence of the acute phase, pathological immune
system response to ongoing infection known as the “cytokine storm”. In addition, it has
recently been reported that viral infection induces an excessive proinflammatory response,
including increased oxidative stress and apoptosis, which may be contributing factors to
the etiology and pathogenesis of COVID-19 [7]. Similarly, Cumpstey et al. [8] described
COVID-19 as a redox disease because an inflammation-driven “oxidative storm” alters the
redox landscape, eliciting mitochondrial, metabolic, endothelial, and immune dysfunction.
Importantly, Xu et al. [9] reported that augmented airway resistance, already associated
with elevated proinflammatory interleukin-6 [10], may be considered a contributing factor
that causes the increased mechanical work of breathing and leads to dyspnea and further
COVID-19 progression.

From an impaired physical function standpoint, Paul et al. [11] found an interesting
intersection of risk factors in patients with both COVID-19 and myalgic encephalomyeli-
tis/chronic fatigue syndrome, particularly cell redox dysregulation, systemic inflammation,
and an impaired ability to produce mitochondrial adenosine triphosphate (ATP) that all
may be involved in post-acute COVID-19 syndrome, which is often accompanied by deteri-
orated physical exercise capacity [12]. Interestingly, Smith [13] formulated the “cytokine
hypothesis of overtraining” more than 20 years ago, highlighting the negative role of
elevated circulating proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necro-
sis factor alpha) on whole body regulation, inducing “sickness” behavior and a decline
in performance.

A change in physical function in post-COVID-19 patients has been assessed using the
6-min walking test (6 MWT) [14–17]. This test is a valid, reliable, and sensitive test for mea-
suring changes in cardiorespiratory fitness in response to interventions [18] or post-COVID-19
rehabilitation [19], which is of great importance in the current post-pandemic era.

Molecular hydrogen (H2) has been shown to be a healthy, safe gas [20] with a
strong and selective antioxidative capability for scavenging the harmful hydroxyl rad-
ical and peroxynitrite anion [20,21]. Numerous studies have indicated that H2 has anti-
inflammatory [22], anti-apoptosis [23], antifatigue [24–27], and regulatory properties [28].
Based on the reported beneficial health effects across a variety of diagnoses [22,29], H2
administration has recently been proposed as a promising therapeutic gas for COVID-19
patients [7,30–35]. For instance, Guan et al. [36] showed clinically beneficial effects of a
hydrogen/oxygen (H2–O2; 66–33%) mixed gas inhalation for the amelioration of most
respiratory symptoms, such as dyspnea, chest distress, or cough, within days 2 and 3 of
hospitalization for COVID-19 patients.

The aim of the study was to assess the effect of 14 days of H2 inhalation in patients
with acute post-COVID-19 syndrome. Based on the aforementioned recent findings, we
hypothesized that there would be a significant improvement in 6 MWT distance and
respiratory function variables after 14 days of H2 inhalation.

2. Materials and Methods
2.1. Participants

This parallel, single-blind, placebo-controlled study with block randomization in-
cluded 26 males and 24 females (Figure 1), whose characteristics are presented in Table 1.
Study participants were recruited using social networks and by collaborating medical
professionals. Inclusion criteria were as follows: (1) age, 18–65 years; (2) with laboratory-
confirmed SARS-CoV-2 infection using real-time reverse transcription polymerase chain
reaction (RT-PCR) assay of nasal and pharyngeal swabs for COVID-19; (3) non-vaccinated
and with manifestation of the self-reported clinical symptoms of COVID-19 (Table 2);
(4) clinically stable to perform pre- and post-laboratory examinations; (5) without a resting
oxygen saturation (SpO2) below 95%; and (6) having a positive RT-PCR test 21–35 days
previously. Exclusion criteria were defined as: (1) hospitalization due to COVID-19; and
(2) regular smoker. In addition, all participants only had COVID-19 and were free of other
known (self-reported) cardiovascular, pulmonary, neurological, and metabolic diseases.
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The study was approved by the Ethics Committee of the Faculty of Physical Culture,
Palacký University Olomouc, Olomouc, Czech Republic (protocol code 26/2021 and date
of approval 28 February 2021). To the best of our knowledge, no side effects during or after
the H2 application have been reported [29,37] or were reported in the present study.
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Figure 1. CONSORT flow diagram.

Table 1. Characteristics of participants.

Male Male Female Female ANOVA/ANCOVA

H2 Placebo H2 Placebo Int. Sex Age

Mean ± SD Mean ± SD Mean ± SD Mean ± SD p p p

n = 50 16 13 10 11
Age (years) 45 ± 19 39 ± 11 41 ± 13 37 ± 12 0.22 0.48 -
Body mass (kg) 82.7 ± 9.2 76.7 ± 9.3 69.1 ± 12.1 62.5 ± 7.1 0.056 <0.001 0.007
Body height (cm) 179.3 ± 6.6 181.3 ± 8.1 167.6 ± 7.2 169.1 ± 7.2 0.44 <0.001 0.63
BMI (kg/m2) 25.7 ± 2.4 23.4 ± 2.5 24.5 ± 3.0 21.8 ± 2.0 0.002 0.078 <0.001
Body fat (%) 18.2 ± 6.7 14.3 ± 4.8 30.5 ± 7.3 22.5 ± 6.4 0.006 <0.001 <0.001
Days after PCR 26.6 ± 4.1 24.7 ± 4.1 26.4 ± 3.7 26.1 ± 4.3 0.28 0.65 0.82

ANOVA—analysis of variance with factors intervention and sex; ANCOVA—analysis of covariance with factors
intervention, sex, and age; H2—molecular hydrogen; Int.—intervention; SD—standard deviation; p—statistical
significance; BMI—body mass index; PCR—polymerase chain reaction test.

Table 2. List of symptoms of coronavirus disease 2019 (COVID-19) in study group of 50 participants.

Symptom Frequency Relative Frequency

Anxiety 1 2%
Cognitive impairment 2 4%
Cough 8 16%
Diarrhea 1 2%
Dyspnea 38 76%
Fatigue 40 80%
Fever 28 56%
Headache 19 38%
Insomnia 15 30%
Joint/muscle aches 20 40%
Loss of taste/smell 17 34%
Shiver 1 2%
Sore throat 3 6%
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2.2. Experimental Therapeutic Protocol

The experimental therapeutic protocol (Figure 2) included pre- and post-therapeutic
laboratory sessions interspersed by two weeks of home, self-administrated H2 inhalation.
During the first session, participants were provided with the study information and fa-
miliarized with the testing laboratory equipment, and they also received instructions and
training for safe operation of the H2 generator. They provided written informed consent
in accordance with the Declaration of Helsinki. To assess the level of functional status
impairment after COVID-19, participants were asked to complete the Post-COVID-19
Functional Status (PCFS) Scale [38]. Anthropometric measurements were then taken in
the pre-examination only, whereas the pulmonary function and physical fitness tests were
performed during the pre- and post-therapeutic sessions. The participants were advised to
avoid drinking coffee, tea, and/or any other substance potentially affecting the selected
physiological performance and perceptual responses to the function tests for at least two
hours before both the pre- and post-therapeutic sessions. In addition, participants were also
asked to avoid alcohol for 48 h before all pre- and post-laboratory testing. To avoid possible
diurnal variations, all laboratory testing was scheduled between 8:30 and 11:00 AM in a
faculty facility. Participants were randomly divided into H2 inhalation and placebo using
a randomization table. The table was generated before the experiment using a random
number generator (the randperm function available in MATLAB R2020a, MathWorks,
Natick, MA, USA). Randomization used a block method to ensure a balance in sample size
across subgroups and was stratified by sex.
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2.3. Basis Anthropometric Measurement

Participant body height and body mass (to the nearest 0.1 kg) were measured using a
digital weighing scale SOEHNLE 7307 (Leifheit, Nassau, Germany). Percent body fat was
determined using bio-impedance analysis (Tanita MC-980MA, Tanita, Tokyo, Japan).

2.4. Pulmonary Function Testing

Each participant performed a standardized pulmonary function test on a spirometer
(Ergostik, Geratherm Respiratory, Bad Kissingen, Germany) that was calibrated daily in
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accordance with the American Thoracic Society and European Respiratory Society technical
statement [39]. The pulmonary function test was performed by the same technician. For
each participant, the pre- and post-testing were performed at approximately the same time
of day. The primary parameters assessed were as follows: forced vital capacity (FVC),
forced expiratory volume in the first second (FEV1), and Tiffeneau index calculated as
FEV1/FVC ratio. All variables were recorded during three test attempts, and the attempt
with the highest FEV1 was used for the analysis. All values were expressed as a percentage
of predicted normal values.

2.5. Physical Fitness, Perceived Exertion, and Dyspnea Assessment

In order to determine global physical functioning, a simple and self-paced 6 MWT
was conducted [18]. Before the 6 MWT, each participant was instructed to walk as far as
possible for 6 min, back and forth on a standardized 30-m track, marked by two cones,
situated in an indoor gym facility. The achieved distance in 6 min was the primary outcome.
To calculate the 6 MWT distance as a percentage of normative values, median values for
the age range 18 to 80 years were taken from Dourado et al. [40]. For each participant, the
appropriate median value was selected based on sex and age. The percentage was then
calculated as 100% × 6 MWT distance/median value.

Arterial oxygen saturation (SpO2) was monitored by pulse oximetry (Onyx Vantage
9590, Nonin Medical, Plymouth, MN, USA) before and during the 6 MWT. The lowest
achieved SpO2 value was recorded as the representative SpO2 response. Immediately after
the 6 MWT, each participant provided a rating of perceived exertion (RPE) score on the
6–20-point Borg’s scale [41] and dyspnea level based on the modified Medical Research
Council dyspnea scale (Grade 0, breathless only with strenuous exercise, to Grade 4, too
breathless to leave the home) available in the Global Initiative for Chronic Obstructive
Lung Disease report [42] on page 28.

2.6. Psychometric Variables Assessment

Participants were asked to score, on a 5-point scale, their morning perceptions of
fatigue, muscle soreness, dyspnea, and insomnia (0—none to 4—severe). Scores were
collected daily during the 14 days of the intervention. A 14-day average was calculated for
subsequent statistical analysis.

2.7. Hydrogen/Placebo Inhalation Protocol

Participants inhaled, via a nasal cannula, either a 300 mL/min dose of H2 produced by
the HB-H12 H2 generator (Guangzhou Hibon Eletronic Technology, Guangzhou, China) or
placebo (ambient air) produced by a technically modified HB-H12 H2 generator (Leancat,
Prague, Czech Republic). According to the operation manual, the H2 generator provides
H2 at 99.99% purity, produced via purified water electrolysis using a membrane electrode
assembly/proton exchange membrane. Inhalation of 100% H2 produced by a H2 generator
through a nasal cannula, even at low flow rates (250 mL/min), was demonstrated to be
an effective method of H2 administration [43]. Participants could not distinguish between
the inhalation of H2 and placebo because H2 is colorless, odorless, and tasteless [29].
H2 or placebo were inhaled during two (morning and afternoon) 60-min home sessions
under resting conditions. To our knowledge, there is a lack of studies from which the
optimal duration of H2 inhalation for rehabilitation after COVID-19 can be derived. In
general, rehabilitation after COVID-19 ranged from 5 days to 6 months [44]. In sports
medicine, the duration of H2 administration prior to exercise ranged from 30 min to
4 weeks [45]. Therefore, we chose a 14-day H2/placebo intervention as a compromise to
keep the duration long enough to reveal a detectable effect on physical and respiratory
outcomes, yet acceptably short for study compliance.
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2.8. Statistical Analysis

All data were recorded in Excel 365 (Microsoft, Redmond, WA, USA) tables for subse-
quent statistical processing. Data are presented as arithmetic mean and standard deviation
or 95% confidence interval (CI). The normal distribution of variables was verified using the
Kolmogorov–Smirnov test. An analysis of covariance (ANCOVA) with intervention factor
(levels: H2 and placebo), sex factor (levels: male and female), and age as covariate was used
to calculate the significances of the intervention and sex. An analysis of variance (ANOVA)
with intervention and sex factors was used for the age variable. ANOVA and ANCOVA
were used to evaluate baseline values obtained before interventions and to evaluate changes
caused by interventions (change = post-intervention value minus pre-intervention baseline).
In cases where sex factor was statistically insignificant, the male and female subgroups
were merged. Differences between H2 inhalation and placebo were then evaluated using a
two-sample t-test. The significance of the change value from zero was evaluated using a
one-sample t-test. When the normal distribution of the variable was not met, nonparametric
alternatives were used, namely: Kruskal–Wallis test, Mann–Whitney U test, and Wilcoxon
test. The association between the 6 MWT change and the changes in respiratory variables
(FVC, FEV1, and FEV1/FVC) was evaluated using the Pearson’s correlation coefficient.
For all statistical tests, p < 0.05 was considered statistically significant. In addition to
statistical significance, Cohen’s standardized difference was used. Statistical analyses were
performed using MATLAB with Statistics Toolbox R2020a (MathWorks, Natick, MA, USA).

3. Results

Raw data are available in Table S1. Participant characteristics are shown in Table 1
and symptoms during COVID-19 infection are listed in Table 2. The types of medications
received by the participants were as follows (frequency and relative frequency): NSAID-
s: 10 (20%); antipyretics and analgesics: 6 (12%); supplements (vitamins and minerals):
5 (10%); antiallergics: 1 (2%); and anticoagulants: 2 (4%). The reported levels of functional
status impairment according to the PCFS Scale were as follows (frequency and relative
frequency): Grade 1–negligible functional limitations: 27 (54%); Grade 2–slight functional
limitations: 20 (40%); Grade 3–moderate functional limitations: 3 (6%).

All variables displayed in Tables 1 and 3, Tables 4–6 were evaluated for normal
distribution using the Kolmogorov–Smirnov test. SpO2 at rest, SpO2 after 6 MWT, daily
dyspnea, dyspnea after 6 MWT, and RPE were significantly (all p ≤ 0.015) different from
the normal distribution and, therefore, these variables were analyzed using nonparametric
tests. The remaining variables were not statistically significantly (all p ≥ 0.061) different
from the normal distribution and were analyzed using ANOVA or ANCOVA.

Table 3. Baseline values of spirometry and 6-min walking test.

Male Male Female Female ANCOVA K-W

H2 Placebo H2 Placebo Int. Sex Age

Mean ± SD Mean ± SD Mean ± SD Mean ± SD p p p p

FVC (L) 4.92 ± 1.01 5.22 ± 0.68 3.61 ± 0.72 3.85 ± 0.61 0.51 <0.001 <0.001
FVC (%) 96.7 ± 14.6 99.8 ± 12.0 106.5 ± 11.3 108.5 ± 11.3 0.55 0.017 0.55
FEV1 (L) 4.11 ± 1.01 4.45 ± 0.54 2.94 ± 0.70 3.18 ± 0.46 0.42 <0.001 <0.001
FEV1 (%) 103.9 ± 17.9 107.5 ± 14.1 100.9 ± 18.5 104.1 ± 10.5 0.55 0.43 0.38
FEV1/VC 0.831 ± 0.075 0.856 ± 0.064 0.813 ± 0.094 0.830 ± 0.063 0.54 0.19 0.017
SpO2rest (%) 97.5 ± 0.8 98.0 ± 0.7 98.3 ± 0.7 98.0 ± 1.0 0.089
Dyspnea (points) 1.3 ± 0.6 1.3 ± 0.6 1.2 ± 0.6 1.5 ± 0.5 0.61
6 MWT (m) 671 ± 80 689 ± 27 654 ± 62 676 ± 36 0.60 0.095 <0.001
6 MWT (%) 106.6 ± 8.9 107.2 ± 5.1 113.3 ± 10.1 114.7 ± 8.3 0.69 0.004 0.89
SpO2walk (%) 94.1 ± 2.3 94.6 ± 3.0 94.6 ± 2.6 94.7 ± 4.1 0.71
RPE (points) 12.2 ± 1.8 11.7 ± 1.8 11.4 ± 1.4 12.2 ± 1.8 0.65

ANCOVA—analysis of covariance with factors intervention, sex, and age; K-W—Kruskal–Wallis test; H2—molecular
hydrogen; Int.—intervention; SD—standard deviation; p—statistical significance; FVC—forced vital capacity;
FEV1—forced expiratory volume in the first second; SpO2rest—oxygen saturation in resting condition; 6 MWT—6-
min walking test; SpO2walk—oxygen saturation during 6-min walking test; RPE—rate of perceived exertion.
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Table 4. Average subjective perceptions of fatigue, sleep quality, muscle soreness, and dyspnea
during 14 days of intervention.

Male Male Female Female ANCOVA K-W

H2 Placebo H2 Placebo Int. Sex Age

Mean ± SD Mean ± SD Mean ± SD Mean ± SD p p p p

Fatigue 1.9 ± 0.6 1.9 ± 0.6 2.1 ± 0.7 2.1 ± 0.5 0.81 0.20 0.18
Sleep quality 1.6 ± 0.9 1.6 ± 0.8 1.6 ± 0.6 1.6 ± 0.9 0.49 0.63 0.002
Muscle soreness 1.5 ± 0.5 1.5 ± 0.5 1.4 ± 0.5 1.5 ± 0.4 0.80 0.99 0.80
Dyspnea 0.6 ± 0.5 0.5 ± 0.5 0.5 ± 0.5 0.6 ± 0.6 0.85

ANCOVA—analysis of covariance with factors intervention, sex, and age; K-W—Kruskal–Wallis test;
H2—molecular hydrogen; Int.—intervention; SD—standard deviation; p—statistical significance. Values of
subjective perceptions were recorded each day during 14 days of intervention and were averaged separately for
each participant.

Table 5. Changes after 14 days of intervention in spirometry and 6-min walking test.

Male Male Female Female ANCOVA K-W

H2 Placebo H2 Placebo Int. Sex Age

Mean ± SD Mean ± SD Mean ± SD Mean ± SD p p p p

FVC (L) 0.19 ± 0.29 0.00 ± 0.22 0.19 ± 0.15 −0.02 ± 0.23 0.003 0.78 0.18
FVC (%) 3.6 ± 6.4 −0.1 ± 4.4 5.4 ± 4.2 −0.4 ± 6.3 0.003 0.73 0.19
FEV1 (L) 0.08 ± 0.33 −0.09 ± 0.27 0.15 ± 0.19 −0.05 ± 0.28 0.021 0.54 0.58
FEV1 (%) 1.5 ± 8.9 −2.5 ± 6.7 5.0 ± 6.7 −1.8 ± 8.6 0.020 0.41 0.43
FEV1/VC −0.015 ± 0.048 −0.017 ± 0.036 −0.002 ± 0.041 −0.011 ± 0.038 0.71 0.40 0.74
SpO2rest (%) 0.3 ± 0.8 0.2 ± 0.4 0.1 ± 0.6 0.2 ± 1.0 0.70
Dyspnea (points) −0.9 ± 0.8 −0.8 ± 0.4 −0.7 ± 0.9 −0.6 ± 0.7 0.64
6 MWT (m) 65 ± 44 20 ± 28 62 ± 33 −5 ± 26 <0.001 0.18 0.86
6 MWT (%) 10.5 ± 7.2 3.2 ± 4.4 10.6 ± 5.4 −0.9 ± 4.7 <0.001 0.27 0.53
SpO2walk (%) 1.4 ± 2.2 0.8 ± 2.6 1.8 ± 3.5 1.6 ± 2.8 0.75
RPE (points) −0.8 ± 3.1 −0.8 ± 2.0 −0.4 ± 1.6 −1.0 ± 2.1 0.89

ANCOVA—analysis of covariance with factors intervention, sex, and age; K-W—Kruskal–Wallis test;
H2—molecular hydrogen; Int.—intervention; SD—standard deviation; p—statistical significance; FVC—forced
vital capacity; FEV1—forced expiratory volume in the first second; SpO2rest—oxygen saturation in resting con-
dition; 6 MWT—6-min walking test; SpO2walk—oxygen saturation during 6-min walking test; RPE—rate of
perceived exertion. Change was expressed as post-intervention value minus pre-intervention baseline.

Table 6. Changes after 14 days of intervention in spirometry and 6-min walking test, with merged
subgroups of males and females.

H2 Placebo

Mean ± SD 95% CI Mean ± SD 95% CI d p p1 p2

FVC (L) 0.19 ± 0.24 0.09 to 0.29 −0.01 ± 0.22 −0.10 to 0.08 0.85 0.004 0.001 0.83
FVC (%) 4.3 ± 5.7 2.0 to 6.6 −0.2 ± 5.2 −2.4 to 2.0 0.83 0.005 0.001 0.85
FEV1 (L) 0.11 ± 0.28 −0.01 to 0.22 −0.08 ± 0.27 −0.19 to 0.04 0.66 0.025 0.070 0.18
FEV1 (%) 2.8 ± 8.2 −0.5 to 6.1 −2.2 ± 7.5 −5.3 to 1.0 0.64 0.028 0.088 0.17
FEV1/VC −0.010 ± 0.045 −0.028 to 0.008 −0.015 ± 0.036 −0.030 to 0.001 0.11 0.70 0.26 0.060
SpO2rest (%) * 0.2 ± 0.7 −0.1 to 0.5 0.2 ± 0.7 −0.1 to 0.5 −0.02 0.63 0.27 0.25
Dyspnea (points) * −0.8 ± 0.8 −1.2 to −0.5 −0.8 ± 0.5 −1.0 to −0.5 −0.08 0.83 0.001 <0.001
6 MWT (m) 64 ± 39 48 to 80 9 ± 29 −4 to 21 1.58 <0.001 <0.001 0.15
6 MWT (%) 10.5 ± 6.4 7.9 to 13.1 1.3 ± 4.9 −0.8 to 3.4 1.61 <0.001 <0.001 0.21
SpO2walk (%) * 1.5 ± 2.7 0.5 to 2.6 1.2 ± 2.7 0.1 to 2.3 0.12 0.42 0.003 0.047
RPE (points) * −0.7 ± 2.6 −1.7 to 0.4 −0.9 ± 2.0 −1.8 to −0.1 0.11 0.88 0.11 0.036

H2—molecular hydrogen; SD—standard deviation; CI—confidence interval; d—Cohen’s d; p—statistical signifi-
cance between H2 and placebo (two-sample t-test or Mann–Whitney U test); p1—statistical significance of H2
to zero (one-sample t-test or Wilcoxon test); p2—statistical significance of placebo to zero (one-sample t-test or
Wilcoxon test); FVC—forced vital capacity; FEV1—forced expiratory volume in the first second; SpO2rest—oxygen
saturation in resting condition; 6 MWT—6-min walking test; SpO2walk—oxygen saturation during 6-min walking
test; RPE—rate of perceived exertion; *—variables with a distribution statistically different from the normal
distribution for which nonparametric tests were used.
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Differences in age, body mass, body height, and days after PCR test between inter-
ventions (H2 versus placebo) were not significant (all p ≥ 0.056, Table 1). Although there
were significant differences in BMI (p = 0.002) and body fat (p = 0.006), randomization can
be considered successful because it is not possible to control all variables simultaneously.
Significant (all p < 0.001) differences in body mass, body height, and body fat between the
sexes are known anthropological differences between males and females.

A comparison of baseline values (before intervention) is shown in Table 3. No sig-
nificant differences (all p ≥ 0.089) were found between the four subgroups using the
Kruskal–Wallis test for SpO2 at rest, dyspnea after 6 MWT, SpO2 after 6 MWT, and RPE.
It can, therefore, be concluded that there were no differences between the interventions
(H2 versus placebo). ANCOVA did not reveal any significant (all p ≥ 0.42) intervention
factor in the remaining variables studied. It can be concluded that there were no significant
differences between the H2 subgroups and the placebo subgroups before the start of the
interventions. The results did show that females had a significantly (p = 0.004) higher
physical fitness expressed as 6 MWT (114.0 % on average) compared to males (106.9 %).

No significant (all p ≥ 0.49, Table 4) differences were found between the H2 subgroups
and placebo subgroups for all self-reported perceptual variables averaged over 14 days
of intervention.

An analysis of changes after 14 days of intervention is shown in Table 5. There were
significant differences (all p ≤ 0.021) in FVC, FEV1, and 6 MWT between interventions.
However, neither sex factor nor age factor were significant (all p ≥ 0.18) in any of the
variables studied. This means that the responses to the interventions were not dependent
on sex or age. Therefore, it was possible to merge both sexes into one group and remove
the age factor. This new statistical analysis is provided in Table 6.

The most important finding in Table 6 is that 14 days of H2 inhalation provided an
improvement of 64 m (95% CI: 48 to 80 m) in 6 MWT, which was significant from zero
(p < 0.001). Placebo inhalation increased 6 MWT distance by 9 m (95% CI: −4 to 21 m),
which was not significant (p = 0.15). The difference in improvement between H2 and placebo
was significant (p < 0.001). RPE was significantly (p = 0.036) reduced by 0.9 points in the
placebo group, but the decrease of 0.7 points was not significant (p = 0.11) in the H2 group.
The difference between the interventions was not significant (p = 0.88). H2 inhalation also
provided a 4.3% (95% CI: 2.0 to 6.6%) improvement in FVC, which was significant from zero
(p = 0.001) and from placebo intervention (p = 0.005), which demonstrated no significant
change (−0.2%, 95% CI: −2.4 to 2.2%, p = 0.85). The improvement in FEV1 after H2
inhalation was not significant (2.8%, 95% CI: −0.5 to 6.1%, p = 0.088) and the decrease after
placebo inhalation was not significant (−2.2%, 95% CI: −5.3 to 1.0%, p = 0.17). However,
the difference between interventions was significant (p = 0.028). No significant (p ≥ 0.42,
Table 6) differences between interventions were found in the remaining studied variables.

Correlation analysis (Figure 3) revealed significant correlations between FVC change
and 6 MWT change (r = 0.43, p = 0.002) and between FEV1 change and 6 MWT change
(r = 0.31, p = 0.030). The correlation between FEV1/FVC change and 6 MWT change
(r = −0.02, p = 0.91) was not significant.



Int. J. Environ. Res. Public Health 2022, 19, 1992 9 of 14

Int. J. Environ. Res. Public Health 2022, 19, 1992  9  of  14 
 

 

provided a 4.3% (95% CI: 2.0 to 6.6%) improvement in FVC, which was significant from 

zero (p = 0.001) and from placebo intervention (p = 0.005), which demonstrated no signifi‐

cant change (−0.2%, 95% CI: −2.4 to 2.2%, p = 0.85). The  improvement  in FEV1 after H2 

inhalation was not significant (2.8%, 95% CI: −0.5 to 6.1%, p = 0.088) and the decrease after 

placebo inhalation was not significant (−2.2%, 95% CI: −5.3 to 1.0%, p = 0.17). However, the 

difference between interventions was significant (p = 0.028). No significant (p ≥ 0.42, Table 

6) differences between interventions were found in the remaining studied variables. 

Correlation analysis (Figure 3) revealed significant correlations between FVC change 

and 6 MWT change (r = 0.43, p = 0.002) and between FEV1 change and 6 MWT change (r = 

0.31, p = 0.030). The correlation between FEV1/FVC change and 6 MWT change (r = −0.02, 

p = 0.91) was not significant. 

 

Figure 3. Correlation analysis between change  in 6‐min walking  test and changes  in respiratory 

variables. Δ—change between post‐intervention and pre‐intervention; 6 MWT—6‐min walking test; 

FVC—forced vital capacity; FEV1—forced expiratory volume in the first second; r = Pearson’s cor‐

relation coefficient; p = statistical significance. Filled and open circles indicate participants who re‐

ceived H2 intervention and placebo, respectively. Dashed lines denote 95% confidence interval. 

4. Discussion 

To the best of our knowledge, this is the first randomized, placebo‐controlled study 

to examine whether home‐based H2 inhalation therapy (2 × 60 min/day, for 14 days) could 

improve respiratory and physical function during early recovery in acute post‐COVID‐19 

patients. The main findings of this novel study are as follows: H2 inhalation compared to 

placebo induced an (1) increase in 6 MWT distance (H2: 64 ± 39 m, placebo: 9 ± 29 m, p < 

0.001); (2) increase in FVC (H2: 0.19 ± 0.24 L, placebo: −0.01 ± 0.22 L, p = 0.004); (3) increase 

in FEV1 (H2: 0.11 ± 0.28 L, placebo: −0.08 ± 0.27 L, p = 0.025); and 4) improvements in FVC 

(r = 0.43, p = 0.002) and FEV1 (r = 0.31, p = 0.030) that correlated significantly with improve‐

ment in 6 MWT. 

There  is a growing body of evidence  that physical  function  is  impaired  following 

both COVID‐19 [12,16] and severe acute respiratory syndrome (SARS) [46] that persists 

for several weeks or months post‐infection. It has been well documented that a sedentary 

lifestyle is generally associated with lower physical fitness [47]. In this regard, a consider‐

able reduction in the amount of physical activity due to quarantine and social contact re‐

strictions, due to the COVID‐19 pandemic [48], may have a negative deconditioning effect 

on physical functioning that is similar to the effects of a sedentary lifestyle in COVID‐19 

patients. The 6 MWT is widely accepted as “a gold standard” for cardiorespiratory capac‐

ity, primarily in patients with chronic respiratory disease [18], and has been considered 

as an appropriate test to triage COVID‐19 patients [14]. Our results showed that pre‐in‐

tervention distance covered during the 6 MWT was 679 m (107%) for males and 666 m 

(114%) for females according to reference values adjusted for age and sex [40]. Our cohort 

of acute post‐COVID‐19 participants exhibited generally good physical function, despite 

still experiencing persisting symptoms, such as fatigue, dyspnea, or muscle soreness (Ta‐

ble 4), up to 26 days, on average, after a positive PCR test. Townsend et al. [49], who as‐

sessed patients aged ~50 years and with greater COVID‐19 severity, reported a 6 MWT 

distance  of  ~460 m, which was  below  the  healthy population  performance  level  [50]. 

Figure 3. Correlation analysis between change in 6-min walking test and changes in respiratory
variables. ∆—change between post-intervention and pre-intervention; 6 MWT—6-min walking
test; FVC—forced vital capacity; FEV1—forced expiratory volume in the first second; r = Pearson’s
correlation coefficient; p = statistical significance. Filled and open circles indicate participants who
received H2 intervention and placebo, respectively. Dashed lines denote 95% confidence interval.

4. Discussion

To the best of our knowledge, this is the first randomized, placebo-controlled study
to examine whether home-based H2 inhalation therapy (2 × 60 min/day, for 14 days)
could improve respiratory and physical function during early recovery in acute post-
COVID-19 patients. The main findings of this novel study are as follows: H2 inhalation
compared to placebo induced an (1) increase in 6 MWT distance (H2: 64 ± 39 m, placebo:
9 ± 29 m, p < 0.001); (2) increase in FVC (H2: 0.19 ± 0.24 L, placebo: −0.01 ± 0.22 L,
p = 0.004); (3) increase in FEV1 (H2: 0.11 ± 0.28 L, placebo: −0.08 ± 0.27 L, p = 0.025); and
(4) improvements in FVC (r = 0.43, p = 0.002) and FEV1 (r = 0.31, p = 0.030) that correlated
significantly with improvement in 6 MWT.

There is a growing body of evidence that physical function is impaired following
both COVID-19 [12,16] and severe acute respiratory syndrome (SARS) [46] that persists
for several weeks or months post-infection. It has been well documented that a sedentary
lifestyle is generally associated with lower physical fitness [47]. In this regard, a consid-
erable reduction in the amount of physical activity due to quarantine and social contact
restrictions, due to the COVID-19 pandemic [48], may have a negative deconditioning effect
on physical functioning that is similar to the effects of a sedentary lifestyle in COVID-19
patients. The 6 MWT is widely accepted as “a gold standard” for cardiorespiratory capacity,
primarily in patients with chronic respiratory disease [18], and has been considered as an
appropriate test to triage COVID-19 patients [14]. Our results showed that pre-intervention
distance covered during the 6 MWT was 679 m (107%) for males and 666 m (114%) for
females according to reference values adjusted for age and sex [40]. Our cohort of acute
post-COVID-19 participants exhibited generally good physical function, despite still ex-
periencing persisting symptoms, such as fatigue, dyspnea, or muscle soreness (Table 4),
up to 26 days, on average, after a positive PCR test. Townsend et al. [49], who assessed
patients aged ~50 years and with greater COVID-19 severity, reported a 6 MWT distance
of ~460 m, which was below the healthy population performance level [50]. Surprisingly,
the 6 MWT result was not associated with either initial disease severity or respiratory
complications after 75 days of diagnosis [49]. On the other hand, Blanco et al. [51] re-
ported a significantly better result for the 6 MWT (~577 m) in older patients (~55 years
old) with less severe COVID-19 up to 104 days after the onset of symptoms. In another
study, Baranauskas et al. [52] found no significant differences in physical function between
post-COVID-19 patients and the control group; however, the post-COVID-19 patients had
impaired postexercise autonomic cardiac regulation up to 3 months after diagnosis. Based
on our results and the above evidence from the literature, deteriorated post-COVID-19
physical function tends to improve a few weeks or months after the onset of symptoms,
but residual health abnormalities associated with infection may still persist.
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Impaired physical fitness, as well as long-lasting fatigue, during post-acute COVID-19
phase may have a common denominator—oxidative stress. Coronavirus induced oxidative
stress and its related negative consequences on cellular homeostasis, including a redox
dysbalance, and deteriorated mitochondrial functions and ATP productions [8,11,53], which
have long been associated with both fatigue [54] and with decline in physical fitness [55]. In
this context, H2 has repeatedly been considered a strong selective antioxidant [20,21] with
the ability to protect mitochondrial respiratory function and ATP production [20,56,57],
as well as being a suitable agent for the treatment of temporary and chronic forms of
oxidative-stress-associated fatigue [58]. The most important finding of the present study is
that 14 days of H2 inhalation, performed at home, resulted in an improvement in physical
function compared to the placebo group, irrespective of sex and age. Specifically, the
distance covered during the 6 MWT was extended by 64 m after H2 therapy, whereas there
was only a 9 m increase in the placebo group. An increased distance of 30 m for the 6 MWT
has previously been established as the minimal clinically important improvement in adults
with chronic respiratory diseases [18]. Hence, we suggest that 2 weeks of daily H2 inhalation
resulted in a clinically relevant improvement in physical function in our cohort of acute
post-COVID-19 patients. From an improved physical fitness standpoint, the antifatigue
effect of H2 demonstrated in the present study has already been documented in other
studies examining different modes of exercise in a healthy population [26,27], well-trained
athletes [25,45,59], and animal models [24]. The antifatigue effect of H2 supplementation
was explained by its ability to stimulate oxidative metabolism, reduce oxidative stress,
adjust the cellular redox environment and improve immune function. Interestingly, the
improvements in 6 MWT distance and in the respiratory variables were independent of
sex and age. It appears that the law of initial values did not play a role here. If the law
of initial values were valid, then the improvement should depend on the pretest value
and, therefore, on age, because the 6 MWT distance, FVC, and FEV1 were age-dependent
(Table 3). However, this result should be interpreted with caution as it may be due to
insufficient sample size. In addition, the changes after 14 days of H2 inhalation may be
dependent on the severity of COVID-19. Therefore, further studies with a larger sample
size stratified by COVID-19 severity are needed to verify this result.

A second important finding in the present study was the similar RPE level in both
groups in response to the post-intervention 6 MWT. However, only the H2 group demon-
strated a clinically relevant improvement in distance walked. In this situation, one would
expect that a faster walking pace would be associated with a higher RPE. Borg’s RPE has
traditionally been interpreted as reflecting a complex feedback mechanism that is mod-
ulated by a variety of physiological functions, including HR rhythm, minute ventilation
and breathing frequency, muscle and joint stiffness, and central fatigue [60]. Therefore,
we suggest that daily H2 inhalation could induce a higher perceived tolerability (resis-
tance) to increased walking pace in our acute post-COVID-19 patients. In addition, our
results show that H2 gas inhalation had a beneficial effect on respiratory function, and
the H2-induced improvement in FVC was associated with gain in cardiorespiratory ca-
pacity. We propose that the positive functional changes induced by H2 inhalation may
be attributed to the higher perceived tolerability to the cardiorespiratory test in our par-
ticipants. An increased tolerability to high exercise intensity was previously reported by
Botek et al. [61], who found a lower lactate response and improved ventilatory efficiency
after pre-exercise H2 application.

Health benefits associated with H2 inhalation in hospitalized patients have recently
been published by Guan et al. [36], who applied 6 L/min of H2–O2 (66%–33%) in an experi-
mental group of COVID-19 patients and a similar dose of O2 in a control group. H2–O2
inhalation resulted in a significantly reduced disease severity, including reduced dyspnea,
coughing, chest distress, and pain. Improvements were rapid and were demonstrated after
the second and third days, as well as at the end of the treatment, compared to the control
group. The clinical benefits of H2–O2 administration have been attributed to the ability
to reduce inspiratory efforts due to a considerably lower resistance to air when passing
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through the respiratory tract [62]. Lau et al. [63] showed that 6 weeks of a well-supervised
exercise training program in ~40-year-old patients recovering from SARS induced a sig-
nificant improvement in the 6 MWT distance of 77 m (baseline distance 590 m). This
improvement in walking distance is almost the same as our result; however, H2 therapy is
potentially a threefold more time-efficient rehabilitation approach than exercise training
when it comes to improving 6 MWT performance for acute post-COVID-19 patients.

We feel that a combination of H2 administration with well-established post-COVID-19
rehabilitation programs [12,64] may have a synergistic rehabilitation effect, resulting in
an enhanced restoration of physical and respiratory functions, and, subsequently, provide
a faster return to normal life. Therefore, studies investigating the combination of H2
administration with other rehabilitation programs would be important future work. H2
administration seems to be a healthy, safe [20,29,65], well-tolerated therapeutic approach
with no clinically significant health issues reported in animal model [37,43]. Therefore,
we assume that H2 could be potentially applied at health rehabilitation facilities (spa),
post-COVID-19 care units, or during telerehabilitation in post-COVID-19 patients.

This study has the following limitations: (1) for logistical reasons, there was only single
blinding and, therefore, detection bias cannot be ruled out. (2) Morning perceptual measures
were obtained from the participants, which could have resulted in self-reporting bias.

5. Conclusions

Our results suggest that 14 days of regular H2 inhalation may be considered as an
efficient rehabilitation approach for improving both physical and respiratory function in
acute post-COVID-19 patients.
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